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ABSTRACT: Biochar addition to soil has been reported to reduce the microbial degradation of pesticides due to sorption of the
active compound. This study investigated whether the addition of hardwood biochar alters the mineralization of 14C-labeled
atrazine in two atrazine-adapted soils from Belgium and Brazil at different moisture regimens. Biochar addition resulted in an
equally high or even in a significantly higher atrazine mineralization compared to the soils without biochar. Statistical analysis
revealed that the extent of atrazine mineralization was more influenced by the specific soil than by the addition of biochar. It was
concluded that biochar amendment up to 5% by weight does not negatively affect the mineralization of atrazine by an atrazine-
adapted soil microflora.
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■ INTRODUCTION

The long-term fate of pesticides applied to agricultural soils
depends on abiotic conditions such as soil properties and
climatic conditions and biological degradation by the soil
microflora. Pesticide sorption in soils is mainly influenced by
organic matter and clay mineral content, leading to a decrease
in microbial accessibility of the agrochemical.1 It can be
expected that an increase in soil organic carbon content will
generally result in a decrease of pesticide biodegradation due to
increased contaminant sorption.2−5

Investigations have demonstrated beneficial effects of biochar
on plant growth, soil fertility, nutrient availability, reduction of
greenhouse gas emissions, and water-holding capacity.6−10

Numerous studies have been published investigating the use of
biomass-derived char (i.e., biochar) as soil amendment with
respect to pesticide fate and effects on soil microbial
activity.3,11−16

Several studies reported the inhibiting influence of chars on
pesticide degradation as a consequence of their high surface
area and sorptive properties.17,18 Loganathan et al. showed that
[14C]atrazine mineralization using a pure culture of the specific
atrazine-degrading microorganism Pseudomonas sp. strain ADP
was reduced by 11% when charred material (crop-residues-
derived char) was incorporated into the soil prior to atrazine
application due to sorption of the herbicide.19 Similar
observations were presented in recent studies using the 14C-
labeled herbicides isoproturon and simazine and wood-derived
biochars in bulk soils;12,20 the rate and extent of degradation
were affected with increasing biochar concentration, showing a
decreased degradation with increased biochar application
amounts.20 Even though the simazine mineralization was

influenced by the different soil properties, the mineralization
decreased in the presence of biochar, probably due to reduced
bioavailability as a consequence of strong and rapid sorption.12

Atrazine-adapted soils, as previously described for the soils
used in this study,21,22 are soils with an atrazine application
history exhibiting a microbial soil community that is capable of
rapidly mineralizing atrazine. The impact of biochar on atrazine
degradation in adapted soils has not yet been evaluated.
In this study, we investigated the influence of biochar

amendments on the biodegradation of atrazine in two atrazine-
adapted field soils from Belgium and Brazil.

■ MATERIALS AND METHODS
The soils used were a Gleyic Luvisol (silt-loam soil) from a field in
Beverst, Belgium, with an annual atrazine application history of 30
years until the day of sampling, and a Rhodic Ferralsol (heavy clay
soil) collected from a field in Campinas do Sul, in southern Brazil, with
a 20 years biennial atrazine application history at day of sampling; both
soils were found to exhibit a high atrazine degradation capability, as
reported in previous studies.21,22 Both soils were sampled from the
surface layer at 0−10 cm depth (pH 5.9 for the Belgian soil, pH 5.7 for
the Brazilian soil) and contained atrazine residues (extractable by
means of accelerated solvent extraction and LC-MS/MS analysis)
accounting for 8.3 and 4.4 μg kg−1 in the Belgian and Brazilian soil,
respectively.21,22 The commercially available biochar material was
prepared anaerobically from hardwood at 450−500 °C (Dynamotive
USA, McLean, VA, USA) and used as received. Physical/chemical soil
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and biochar properties, such as soil texture, element contents, and
surface areas, are given in Table 1.
Elemental Analyses. The elemental composition of Belgian and

Brazilian soils and biochar was determined in triplicates on LECO
TCH 600, LECO CHNS-932, and TJA-IRIS-Intrepid elemental
analyzers, as described elsewhere.23

Surface Area Analyses of Soils and Biochar. For surface area
analyses, soils and biochar were outgassed at 70 °C for 16 h and at
100 °C for 2 h, respectively. The specific surface area (SSACO2

, m2 g−1)
was determined from CO2 isotherms at 273 K. Pore and surface
characteristics were performed using an Autosorb-1MP (Quantach-
rome) apparatus. The CO2 isotherm was modeled using the Dubinin−
Radushkevich equation.24 The linear form of the Dubinin−
Radushkevich equation was also used to calculate the micropore
surface area based on a CO2 molecule monolayer.
Soil Preparation, [14C]Atrazine Spiking, and Biochar Soil

Incorporation. The soils were air-dried to a residual water content of
4% in the Belgian soil and 12% in the Brazilian soil, 2 mm sieved, and
stored in the dark at 2 °C until further use. The atrazine-spiking
solution was prepared by mixing 20 μL of ethanol [14C]atrazine
solution (American Radiolabeled Chemicals, St. Louis, MO, USA)
with a specific radioactivity of 6.41 kBq μL−1 and 78.7 μg of atrazine
[6-chloro-N-ethyl-N′-(1-methylethyl)-1,3,5-triazine-2,4-diamine] as
active ingredient (ai, chemical purity = 99%) with 1980 μL of
nonradioactive atrazine ethanol (EtOH, Merck Lichrosolv, ≥99.9%
purity) solution containing 1290 μg of ai atrazine (chemical purity =
98%, Riedel-de Haen̈, Germany). The [14C]atrazine spiking solution
was added to a mortared soil aliquot (5% w/w), equaling a field
application concentration of 3 mg atrazine kg−1 of soil, and was left to
air-dry until complete dryness (to avoid potential influences on
microbial turnover by the EtOH as, e.g., a potential carbon source),
determined by constant weight. The spiked soil was mixed with an
end-over-end shaker with the remainder of the respective bulk soil
portion for 1 h to achieve homogeneity. Homogeneity of the final
spiked soil was tested for quantification of initial radioactivity using 10
subsamples of 0.5 g by complete combustion and 14C-activity
detection applying a Biological Oxidizer (OX500, R. J. Harvey
Instrument Corp., Tappan, NY, USA) using Oxysolve C-400 as a
scintillation cocktail (Zinsser Analytic, Germany). A liquid scintillation
analyzer (LSC; 2500 TR, Tri-Carb, Packard) with an internal standard
was used for 14C-activity detection. The incorporated 14C-activity
accounted for 1.05 kBq g−1 soil.
Incubation Experiments. The influence of biochar amendments

on the mineralization of [14C]atrazine applied to soil was determined
as follows. For both soils, triplicates of 10 g of dry soil equivalents were
weighed into 250 mL Duran glass bottles (biomicrocosms). Quantities
of 0.01, 0.1, and 0.5 g of biochar (equal to 0.1, 1, and 5% by weight of
dry soil, in accordance with low and high agronomic addition rates, as
previously described12) were added to the biomicrocosms. The
amount of biochar added was chosen as a multiple of an estimated
percentage of 0.02% (w/w) biochar deposited on agricultural soils
after the crop burning of one harvest.13 All experiments were

conducted under 60% water-holding capacity (WHCmax) using
distilled water and under slurried conditions using 0.01 M CaCl2
solution (1 + 4, w/v, soil + solution). Controls with soil only were set
up in triplicates for both soils and moisture conditions. During the
incubation period of 88 days, the evolution of 14CO2 resulting from
[14C]atrazine mineralization was analyzed as described elsewhere.21

Organic-free deionized Millipore water (Milli-Q Plus 185, Millipore
purification system) was used for all procedures needing water.

Mineralization Kinetics. The cumulative mineralization of
[14C]atrazine was described by the Gompertz growth model

= − − −y a t t kexp( exp( ( )/ ))0

where a is the plateau representing the maximum percent
mineralization, t is the time (days), t0 is the abscissa of the inflection
point representing the lag phase (days), and k is the Gompertz
constant representing the inverse mineralization rate (days). This
model has been used in several studies evaluating atrazine degradation
in soils.25,26 The data were fitted to the model using Sigma Plot 12
(Systat Software, GmbH, Erkrath, Germany).

Statistical Analyses. To assess how soil (Belgian vs Brazilian soil),
soil moisture (WHC at 60% and slurry), and added biochar amounts
[0.0, 0.1, 1.0, and 5.0% (w/w)] affected [14C]atrazine mineralization
during the incubation period of 88 days, we performed a non-
parametric MANOVA,27 using the Euclidian distance measures and
4999 permutations. Nonparametric MANOVA was chosen instead of a
parametric MANOVA because the distribution of data was not normal
and due to inhomogenous variances between groups, as tested by
Shapiro−Wilks and Levene tests. When post hoc pairwise comparisons
were made, the Bonferroni correction was used.28

■ RESULTS AND DISCUSSION
A higher soil organic carbon content of 3.16% was determined
in the Brazilian soil compared to the Belgian soil (1.26%; Table
1). However, the C/N ratio was in a similar range for both soils,
being 9.70 and 11.29 for the Belgian and Brazilian soils,
respectively. The biochar showed high carbon and oxygen
contents of 71 and 21%, respectively, and the elemental
composition was comparable to that of other hardwood
biochars reported in the literature.29 The specific surface
areas for the biochar and the Belgian and Brazilian soils were
260, 13, and 38 m2 g−1, respectively (Table 1). A high specific
surface area of biochars was found to increase atrazine
sorption.11,30 This may elude microbial access, hence
suppressing the mineralization of [14C]atrazine as applied in
our study.31

However, compared to control treatments the cumulative
[14C]atrazine mineralization rates [day−1] were larger for all
treatments with a biochar application rate of 5% (w/w) (Table
2). These mineralization rates determined for atrazine-treated

Table 1. Soil Texture of the Atrazine-Adapted Soils from Belgium and Brazil; Elemental Composition and Surface Area of Soils
and Biochara

sample texture (%) Cb (%) N (%) H (%) O (%) H/Cc O/Cc C/Nd SSACO2

e (m2 g−1) R2f

Belgian soil sand, 30.12 1.26 ± 0.02 0.13 ± 0.00 nag na 9.70 12.64 1.00
silt, 62.05
clay, 7.83

Brazilian soil sand, 24.42 3.16 ± 0.04 0.28 ± 0.01 na na 11.29 37.86 1.00
silt, 25.20
clay, 50.38

biochar 70.65 ± 0.20 0.20 ± 0.00 3.37 ± 0.02 21.30 ± 0.20 0.57 0.23 353.25 260.10 1.00
a± standard deviation of n = 3. Values are given in weight percent. bC equals soil organic carbon content. cAtomic ratio. dMass ratio. eSSACO2

,
specific surface area determined by CO2 isotherms at 273 K. fR2, determination coefficient of Dubinin−Radushkevich isotherm. gna, not analyzed.
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soils and their biochar-amended mixtures were in a range
reported for other atrazine-treated soils.25,26,32 Moreover, for
the Brazilian soil amended with 5% biochar (w/w) and at 60%
of the maximum WHCmax, a shorter lag phase (t0) was observed
(Table 2). Both an increased mineralization rate and a shorter
lag in treatments with 5% biochar (w/w) may indicate an
improved bioavailability and/or biodegradation of [14C]-
atrazine.
The Belgian soil without biochar addition showed a high

[14C]atrazine mineralization of 78% at 60% WHCmax after 88
days of incubation. This mineralization accounted for 84%
under slurry conditions. Mineralization remained comparably
high in all treatments containing biochar, accounting for 78%
(+0.1% biochar), 77% (+1.0% biochar), and 71% (+5.0%
biochar) at 60% WHCmax conditions (Figure 1a) and 85%

(0.1% biochar), 83% (1% biochar), and 76% (5% biochar) at
slurry conditions (Figure 1b) after 88 days.
The Brazilian soil without biochar showed similar atrazine

mineralization at both moisture regimens, accounting for 39
and 37% at 60% WHCmax and slurry conditions, respectively
(Figure 1c,d). Biochar amendment had a highly stimulating
effect on the [14C]atrazine mineralization in the Brazilian soil,
accounting for 50% (0.1% biochar), 48% (1.0% biochar), and
46% (5.0% biochar; Figure 1c). With increasing amounts of
added biochar, the [14C]atrazine mineralization was even more
pronounced at slurry conditions, accounting for 49% (0.1%
biochar), 51% (1.0% biochar), and 62% (5.0% biochar; Figure
1d) after 88 days.
Organic amendments have been used as soil additives to

increase soil sorption capacity, resulting in a decreased pesticide
concentration in the soil solution.33,34 Our results showed

Table 2. Gompertz Mineralization Characteristics of [14C]Atrazine Applied to the Atrazine-Adapted Soils from Brazil and
Belgium, Which Were Amended with Different Amounts of Biochar [0.0, 0.1, 1.0, and 5.0% (w/w)]a

soil at 60% WHCmax
b soil at slurry conditionsb

soil a (%) k (days) 1/k (day−1) t0 (days) R2 a (%) k (days) 1/k (day−1) t0 (days) R2

Belgian soil
control 72.4 ± 2.5 6.4 ± 0.9 0.126 9.6 ± 0.6 0.98c 75.5 ± 5.1 11.1 ± 2.2 0.090 12.1 ± 1.5 0.94c

0.1% biochar 74.0 ± 1.7 6.1 ± 0.7 0.164 9.3 ± 0.5 0.98c 78.7 ± 4.3 12.4 ± 2.0 0.081 12.6 ± 1.4 0.95c

1.0% biochar 72.4 ± 2.5 6.4 ± 0.9 0.156 9.6 ± 0.6 0.98c 78.6 ± 3.3 10.9 ± 1.4 0.092 12.3 ± 1.0 0.97c

5.0% biochar 68.0 ± 0.6 5.2 ± 0.3 0.192 10.1 ± 0.2 1.00c 74.1 ± 0.5 5.2 ± 0.2 0.192 10.3 ± 0.1 1.00c

Brazilian soil
control 42.6 ± 1.5 24.1 ± 1.5 0.041 37.6 ± 1.4 1.00c 35.6 ± 1.7 17.7 ± 2.0 0.056 21.2 ± 1.5 0.99c

0.1% biochar 53.0 ± 0.7 20.7 ± 0.5 0.048 32.3 ± 0.4 1.00c 52.4 ± 2.8 24.0 ± 2.1 0.042 35.5 ± 1.8 0.99c

1.0% biochar 49.8 ± 0.6 18.7 ± 0.4 0.053 29.4 ± 0.3 1.00c 53.7 ± 2.7 23.0 ± 2.0 0.043 33.8 ± 1.6 0.99c

5.0% biochar 44.4 ± 0.4 12.3 ± 0.3 0.081 21.3 ± 0.2 1.00c 61.9 ± 1.0 12.5 ± 0.5 0.080 20.8 ± 0.4 0.99c

aThe soils and their mixtures with biochar were incubated for 88 days. Data are shown as the mean and standard error. ba, maximum percent
mineralization; k, Gompertz mineralization constant, 1/k representing inverse mineralization rate; t0, lag phase; R2, coefficient of determination.
cSignificant at a level of p < 0.001.

Figure 1. Mineralization of [14C]atrazine in (a, b) Belgian and (c, d) Brazilian soil at 60% WHCmax and slurry conditions with biochar amendment.
Lines with solid lines and dots represent the positive control indicating the atrazine mineralization potential in Belgian and Brazilian soil without any
biochar amendment. Different letters indicate significant differences (p < 0.05); ns, not significant differences between mineralization. Lines are visual
aids only. Data points represent mean values of n = 3. Error bars indicate standard deviation of n = 3 and appear when bigger than data point.
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elevated Gompertz mineralization rates of [14C]atrazine in both
soils at the highest biochar concentration and a significantly
increased cumulative mineralization in the Brazilian soil. This
outcome contradicts the assumption that biochar soil amend-
ments reduce atrazine biodegradation by strong sorption of this
chemical. We assume that the high atrazine mineralization in
the presence of the used biochar may be attributed to
cometabolic degradation due to easily degradable compounds
associated with the biochar.35,36 Even though a reduced
microbial atrazine mineralization was reported in the presence
of crop-residue-derived char using an atrazine-degrading
organism,19 our study highlights the noninhibiting influence
of highly carbonaceous biochar amendments on atrazine
degradation by native soil bacteria. It is likely that a community
of atrazine-degrading microorganisms in our soil samples
exhibits stronger atrazine mineralization capabilities compared
to single atrazine-degrading strains. With regard to the above-
mentioned publications, our results further demonstrate that
biochar effects on pesticides in soils cannot be generalized due
to the highly diverse nature of biochars and the complexity of
soil systems.
As indicated by MANOVA statistical analysis, mineralization

of [14C]atrazine was significantly affected for soil and soil ×
biochar interaction (Table 3). The soils were by far the most

important source of variation, explaining ≈55% of the variance
in the data, despite the improved mineralization kinetics at
higher biochar application rates (5% w/w). Because biochar did
not generally affect the extent of mineralized [14C]atrazine,
interactions of [14C]atrazine with the different soils were the
main factor affecting its mineralization (Table 3). Thus,
[14C]atrazine mineralization was significantly increased (p <
0.05) in Brazilian soil, but not in Belgian soil (Figure 1). This
finding emphasizes the importance of physical/chemical soil
properties supporting sorption and mineralization processes
and the presence of a microbial community being able to
rapidly mineralize atrazine. However, biochar amendments may
prime pesticide mineralization, as shown in our study.
The high microbial atrazine degradation capability in the

used atrazine-adapted soils resulted in a rapid mineralization of
the freshly applied [14C]atrazine even in the presence of

biochar. However, it remains unknown if atrazine residues
present in the used soils from former field applications as
mentioned above were also subject to mineralization. As
reported earlier, aged atrazine residues remained accessible to
the specific atrazine-degrading microorganism Pseudomonas sp.
strain ADP.23 However, atrazine is not entirely degraded even
in the atrazine-adapted Belgian soil, as described in a previous
study.21 We assume that the microbial atrazine mineralization
occurs more rapidly than strong sorption on biochar, which
would, in turn, result in an exclusion from bioavailability.19

The presence of the biochar used may not reduce the
efficiency of pesticides in soils because the molecules remain
bioaccessible to the greatest extent. However, more research is
needed to investigate the herbicidal efficiency in biochar-
amended soils and the effects of biochar on pesticide metabolite
formation and leaching. Because each particular biochar has
different properties as a result of different biomasses and
operational parameters used in production,37 its suitability for
environmental application cannot be generalized. Further
investigations under real environmental conditions are
required.
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